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Abstract: One of the most important criteria for selecting coal for a given technology are the ash fusion 
temperatures (AFTs). An effective way to regulate the AFTs so that they meet the criteria for a given 
industrial application is to form blends of different coals. The values of the AFTs in the blends are non-
additive, therefore they can't be calculated using the weighted average of the blend components. On the 
other hand, direct determination of ATFs values requires many additional time-consuming and 
expensive laboratory tests. Therefore, it is important to develop a solution that, in addition to the 
effective prediction of the values of AFTs, will also enable optimal selection of components of the blend 
in terms of its key parameters. The aim of the work was to develop an algorithm for the selection of the 
optimal coal blends in terms of AFTs for given industrial applications. This algorithm uses nonlinear 
classifying model which was built using machine learning method, support vector machine (SVM). To 
carry out the training samples of Polish hard coals from different mines of the Upper Silesian Coal Basin 
were used. The accuracy of the developed model is 92.3%. The results indicate the effectiveness of the 
proposed solution, which can find practical application in the form of an expert system used in the coal 
industry. The paper presents the concept of developed IT tool which has been tested for a selected case. 

Keywords: coal blends, ash fusion temperature, support vector machine, principal component analysis, 
machine learning 

1. Introduction 

One of the most important factors to be considered in choosing a coal for a given application is the 
measurements of ash-fusion temperatures (AFTs) which affect behavior of coals during the combustion 
and gasification (Vassileva and Vassilev, 2002). The AFTs are a measure of the high temperature 
softening and melting characteristics of a coal ash. Together with the chemical composition of ash, it is 
one of the factors having a significant impact on the tendency of slagging and fouling of power boilers 
(Róg, 2003). The AFTs of coal give also detail information on the suitability of a coal source for 
gasification procedures, and specifically to which extent ash agglomeration or clinkering is likely to 
occur within the gasifier (Van dyk et al., 2001; Miao et al., 2016; Seggiani, 1999). For instance, in the case 
of fixed bed reactors, with the dry ash bottom handling system, the temperature of ash melting should 
be higher than 1200°C (1473.15K), and for the wet bottom version it should be lower than 1300°C 
(1573.15K) (Porada et al., 2017). In the case of solid-state slag-tap boilers generally pulverized coal with 
a high AFTs is required to prevent slagging, whereas the liquid-state slag-tap boilers require a low AFTs 
(Wang and Massoudi, 2013). Detailed guidelines related to the appropriate AFTs values for a specific 
industrial application are given in the literature (Luxsanayotin et al., 2010; Porada et al., 2017; Tillman 
et al., 2012; Patterson and Hurst, 2000; Collot, 2006; Thomas, 2002).  

Fusion temperatures typically are measured at four defined points under both reducing and 
oxidizing conditions. These points are simply the temperature range in which the process of ash melting 
takes place. The ash fusion behavior is conventionally described by the temperature of initial 
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deformation (IDT), spherical temperature (ST), hemispherical temperature (HT) and ash fluid 
temperature (FT) (Gray, 1987; Jak, 2002). The method of determining the characteristic AFTs of solid 
fuels, the shape and size of samples and the method of their preparation are defined by standard used 
in Poland - ISO 540:1995. 

The most important indicator representing AFTs in the Polish industry to assess the suitability of 
coal for combustion as well as gasification purposes is temperature corresponding to hemisphere 
temperature (HT). Investigations of ash fusion from Polish coals allowed the separation of easily fusible 
ashes, which ash melting (HT) in the reducing atmosphere is lower than 1200°C (1473.15K), medium 
fusible with HT from 1200 to 1350°C (1473.15K to 1623.15K) and ashes difficult to melt, which the HT is 
greater than 1350°C (1623.15K). Fig. 1 shows the connection of selected type of boilers and reactors with 
the HT required for their performance (based on literature guidelines) expressed in predefined intervals 
(easily, medium, and difficult fusible). 

 
Fig. 1. Selected type of boilers and reactors with the HT required for their performance expressed in predefined 

intervals 

In the industry, the practice of blending coals with different physicochemical parameters is often 
used to obtain the fuel with the desired properties (Yörükoğlu, 2017; Alekhnovich and Bogomolov, 
2010). Initially the practice of blending with an engineering and scientific base was dominated by 
environmental issues. A very important aspect was the control of SO2, NOx and particulates. Today the 
practice is dominated by economic and technical consideration (Tillman et al., 2012). Coal blending may 
have various targets e.g. blending for cost savings, blending for diversifying supplies for security 
reasons, blending for enhancing fuel flexibility and extending the range of acceptable coals or blending 
to achieve a particular AFTs to meet different industrial requirements (Shen at al., 2015). In the latter 
case, after blending process, a comprehensive investigation is required to unravel the effect of elemental 
ash in coal on AFTs of the blended coals (Bahrin, 2009). The temperature at which coal ash melts is an 
important consideration for coal-fired boilers and gasification reactors. Therefore, it is important to 
know, or be able to predict, the ash fusibility characteristics of a coal or coals blend before it is fed to the 
boiler or reactor (Seggiani and Pannocchia, 2003; Carpenter, 1995). Determining the AFTs of the coal 
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blend without time-consuming and expensive experiments is difficult, because these parameters are 
considered as a non-additive values (Carpenter, 1995). To develop blending proportions, it is not 
sufficient to take weighted values of the measured AFTs of the individual coal since this ignores the 
underlying chemistry of the ash system (Jak, 2002).  

There have been a number of investigations on the prediction of AFTs using variety of methods like 
statistical correlations between AFTs and ash composition (Seggiani, 1999; Shi et al. 2018), empirical 
methods (Huggins et al., 1981) and machine learning methods based on the black box modelling (Karimi 
et al., 2014; Tambe et al., 2018; Yazdani et al., 2018). Many of them are characterized by reasonably good 
prediction accuracies. However, they are not without drawbacks e.g. in some cases not enough amount 
of data, especially for statistical models. Next issue concerns models based on a large number of 
variables, which can lead to excessive complexity. Another issue is the lack of discussion on the practical 
application of research results in industry. 

Many references in literature emphasize the importance of composing coal blends in order to 
influence the values of AFTs in the context of a specific industrial application (Tillman et al., 2012; Jak 
et al., 2002; Shen et al., 2015; Sasi et al., 2018; Li et al., 2017). However, no practical tool was found that 
would be able to accomplish this task in a completely automatic way.  

Therefore, the authors of the paper developed an IT tool using a machine learning-based classifier 
that allows selection of the optimal composition of the blend meeting the requirements of a specific 
industrial application in terms of AFTs. The support vector machine (SVM) technique has been 
examined and was chosen as the basis of the algorithm used in the IT tool. This tool has been tested for 
a selected case - coal from a specific mine from the Upper Silesian Coal Basin intended for combustion 
in a pulverized coal-fired boiler. The AFTs of the coals used in the pulverized coal-fired boilers should 
be as high as possible in order to prevent slagging (Tillman et al., 2012). Therefore, the task was to select 
such oxides in the blend, so that the resulting AFTs would meet this requirement. 

2. Materials and methods 

2.1. Data set 

The subject of analysis and the basis for development classification model were samples of Polish hard 
coals. These samples were acquired from various mines of the Upper Silesian Coal Basin, containing the 
largest hard coal resources in country.  

For each sample the hemispherical temperature (HT) in a reduction atmosphere (mixture of CO:CO2 
in proportions 3:2) and ash oxide composition (content of SiO2, Al2O3, Fe2O3, CaO, MgO, TiO2, Na2O, 
K2O, SO3) was determined. The analyses of the samples were carried out in the accredited laboratory of 
the Department of Solid Fuel Quality Assessment at the Central Mining Institute, Poland. 

In Fig. 2 statistical distribution of ash components in examined coals is presented. The plot displays 
the average concentration of constituents as the dotted lines. The bars indicate lower and upper quartile 
of the distribution, while the whiskers indicate the maximal and minimal observed concentration of 
component. Figure 2 shows statistical distribution of parameters after removing of the most distant 
outliers (388 samples). 

In general, the values presented above correspond to a typical composition of the ash of Polish coals: 
SiO2 – 41.60%, Al2O3 – 23.74%, Fe2O3 – 17.52%, CaO – 8.39%, MgO – 1.75%, SO3 – 6.05%, others – 0.95%. 

Each of the analyzed samples was given one of three labels – ‘L’, ‘M’ or ‘H’, corresponding to the 
specific hemispherical temperature range (according to Fig. 1). Label 'L' means a sample with a low HT 
(easily fusible), the label 'M' - a sample with a medium HT (medium fusible), label 'H' - a sample with a 
high HT (difficult fusible).  

In the analyzed data set, 45 coal samples were characterized by low hemispherical temperature of 
ash, 138 - high hemispherical temperature of ash and 205 - medium hemispherical temperature of ash, 
388 in total. 

The oxide composition was the input vector of the classification model and HT was the output. 
The entire data set was divided in a random manner into a training set (80% of samples) and a test 

set (20% of samples). The samples were divided in such a way, that the proportions of the classes in the 
training set correspond to the proportions of the classes in the test set. The training set was used to 
create model. Its effectiveness was then evaluated on the test set.  
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Fig. 2. Statistical distribution of ash components in examined coals 

2.2. Principal component analysis 

Principal component analysis (PCA) is a technique used to reduce the dimensionality of the set of 
variables while retaining the maximum variability of original data. PCA allows to remove 
multicollinearity from the data. Multicollinearity is unfavorable phenomenon during classification 
process as it cause redundancy and increase in the computational effort.  

PCA is based on the transformation of observable input variables into new, unobservable and 
uncorrelated variables called principal components (PC). Each of the principal components is a linear 
function of the original input variables. The sum of variances of all input variables is equal to the sum 
of variances of the principal components. It means that the transformation of the original predictors into 
a set of principal components does not lead to any loss of information about analyzed phenomenon.  

The principal components are ordered in such a way, that their variances are successively smaller. 
The first few principal components contain the vast majority of information about the analyzed 
phenomenon, provided by original input variables. It allows to reduce the number of principal 
components with the minimal loss of input information (Geron, 2017).  

In the presented paper PCA analysis was applied before classification procedure in order to reduce 
nine-dimensional input data set.  

In order to perform PCA analysis each attribute of the input vector has to be standardized:  

𝑋" = $%&'()	($)
-./($)

 .                                                                        (1) 

After that transformation features have the properties of a Gaussian distribution with mean = 0 and 
standard deviation = 1.  

2.3. Balancing procedure 

Due to the unequal number of samples belonging to individual classes of training set, the balancing 
procedure was performed. The number of samples of the training set belonging to classes ‘L’ and ‘M’ 
was balanced to the number of samples of the class ‘H’. Oversampling and undersampling in data 
analysis are techniques used to adjust the class distribution of a data set.  
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 Oversampling aims to achieve an equal distribution by replicating the minority samples so that the 
distribution is balanced. There are a number of methods available to oversample a dataset used in a 
typical classification problems. The technique called Synthetic Minority Over-sampling Technique 
(SMOTE) was chosen to increase the number of samples of class ‘L’ so that it equals the number of 
samples of class ‘H’. The SMOTE (Chawla et al., 2012) algorithm carries out an oversampling approach 
to rebalance the original training set. Instead of applying a simple replication of the minority class 
instances, the key idea of SMOTE is to introduce synthetic examples. This new data is created by 
interpolation based on the distances between the point and its nearest neighbors. 

Undersampling is the process where some of the observations are deleted from the majority class in 
order to match the numbers with the minority class. Random undersampling technique was chosen to 
reduce the number of samples of class ‘M’ so that it equals the number of samples of class ‘H’. This is a 
classical method in which the goal is to balance class distributions through the random elimination of 
majority class examples. 

After applying the balancing procedure, the training set contained an equal number of samples of 
each class. 

2.4. Support vector machine 

Support vector machine (SVM) is supervised learning technique designed for performing binary 
classification, but it can be extended to the multi-class problems. Suppose we are given a set of training 
data {(xi, di), i=1,2…,n} where n is the number of samples, xi is input vector, di is response variable and 
can take on one of two possible values: −1 or 1. The objective of the algorithm is to find a hyperplane in 
an N-dimensional space of features that distinctly classifies data points.  

There are many possible hyper-planes separating two classes of data points. The optimal hyperplane 
is considered to maximize the margin of separation between the two classes. Models of this type are 
more resistant to generalization errors compared to algorithms with narrow margins. Therefore, the 
issue of learning the structure of the SVM is defined as the following optimization problem: 

min
3

4
5
𝐰7𝐰+ 𝐶∑ 𝜉<=

<>4      (2) 

with the following constraints (i=1,2…,n):  
𝑑<(𝐰7𝜙(𝐱<) + 𝑏) ≥ 1 − 𝜉<     (3) 

𝜉< ≥ 0      (4) 
where w is N-dimensional vector of weights, b - the bias (offset for that hyperplane), C – the capacity 
constant (adjusted by the user), ξi non-negative slack variable used for handling non separable data, 
selected individually for each sample, f - kernel function (mapping the original data is into the space of 
features with a higher number of dimension) (Vapnik, 1998; Cortes and Vapnik, 1995). 

The main advantage of the SVM algorithm is low sensitivity to the number of learning samples. This 
is particularly important in solving problems for which the amount of data is limited. This technique 
also scales relatively well to the high dimensional data and captures the nonlinear relationships between 
variables (Mohamed, 2017). These advantages make the SVM algorithm a good tool for analyzing data 
sets related to coal parameters, in which the number of records is limited, dimensionality is high and 
relationships between variables are complex and non-linear.  

2.5. Software  

Data preparation and exploration, development of classification model and its evaluation were carried 
out using the Python programming language and its libraries dedicated to data analysis, machine 
learning and visualization (Pandas, Scikit-Learn, Matplotlib, Seaborn). 

3. Results and discussion 

3.1. Principal component analysis 

Nine inputs (content of SiO2, Al2O3, Fe2O3, CaO, MgO, TiO2, Na2O, K2O, SO3 in ash) of data set were 
subjected to the principal component analysis (PCA). After transformation nine PCs were extracted. In 
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Fig. 3 variance ratio explained by particular principal components is presented. First component 
captures 66.1% percentage of variance, second - 12.2%, third – 7.9%, fourth – 6.4%.  

 
Fig. 3. Ratio of variance explained by particular principal components (PC) 

Fig. 4-6 show the projections of the examined coal samples onto the planes determined by particular 
pairs of principal components. Generally, the classes are quite well separated from each other. 

The projection of records onto the plane determined by PC1-PC2 allows the observation that all the 
coal samples with low hemispherical temperature of ash are grouped together. Samples with medium 
and high hemispherical temperature of ash are more difficult to distinguish. However, most records of 
’H’ class are placed on the right side of the coordinate system. 

 
Fig. 4. Projection of samples onto the plane defined by PC1-PC2 
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Fig. 5. Projection of samples onto the plane defined by PC1-PC3 

 
Fig. 6. Projection of samples onto the plane defined by PC1-PC4 

The first four components explain 92.6% of the total variance. Therefore, only these components have 
been included as input variables of the classification model. 

3.2. Support vector machine 

Many SVM models with different kernel functions have been tested. Finally, SVM algorithm with RBF 
kernel function was applied in this work. The model employs two hyperparameters C and γ, which 
have a strong influence on its performance.  

C is the penalty parameter of the error term. It controls the trade-off between errors on training data 
set and margin maximization. Models with larger values of C are better at classifying all training points 
correctly but have a smaller margin of separation (are more prone to overfitting). Model with smaller C 
have a larger margin of separation, but allow for a higher classification error. 
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γ parameter determines the shape of the decision boundary. With the increase of γ, the decision 
boundary becomes more irregular and bends at each example (the classifier tries to perfectly fit the 
training data). In the case of smaller values of the gamma coefficient, the decision boundary is 
characterized by a smoother course (Geron, 2017). 

Model hyperparameters C and γ were estimated using grid search procedure (simple grid search). 
This technique consists in preparing a list of values of various parameters. Then the algorithm assesses 
the effectiveness of the model for each combination of these values, so as to determine the optimal 
configuration.  

The parameters of the SVM model were optimized by cross-validated grid-search with 10 folds. It 
means that overall train set was divided into 10 subsets. During the 10 iterations, 9 subsets were used 
in the learning process, 1 was applied to assess the model efficiency. The overall efficiency of the model 
was estimated by determining the mean value for 10 iterations. Then, the process was repeated for  all 
C and γ values of the grid. It was proved that when C=1 and γ=1 the model performance was the best. 

The efficiency of the determined classifier is assessed by comparing the compliance of the estimated 
labels and the actual labels of individual samples. Table 1 presents the confusion matrix of SVM model 
(determined on test set). Correct classifications are located in the diagonal of the table.  

Table 1. Confusion matrix of SVM model 

n=78 Predicted label 
‘L’ ‘M’ ‘H’ 

Actual label 
‘L’ 9 0 0 
‘M’ 0 38 3 
‘H’ 0 3 25 

 
Based on the values given in the confusion matrix, the overall accuracy of the SVM model was 

determined as the ratio of correctly qualified samples to the total number of samples. The accuracy of 
the developed model was 92.3%, which means a satisfactory result.  

In practice, besides accuracy, other measures are used to assess classification models, as (Geron, 
2017): 

- precision 

𝑃𝑃𝑉 = 7I
7IJKI

                 (5) 

- recall: 

𝑇𝑃𝑅 = 7I
7IJKN

                                                                            (6) 

and F1, being combination of precision and recall: 

𝐹1 = 2 ∙ IIR∙7IS
IIRJ7IS

                                                                           (7) 

where: TP - the number of cases actually belonging to a determined group and classified to it correctly, 
FP – the number of cases classified to a determined group but not belonging to it, FN - the number of 
cases belonging to a determined group, but classified into other groups. 

Values of the above-described measures for particular classes (‘L’, ‘M’, ‘H’), determined for the test 
set, were collected in Table 2.  

Table 2. Evaluation of SVM model 

Class Precision Recall F1-score 
‘L’ 1.00 1.00 1.00 
‘M’ 0.93 0.93 0.93 
‘H’ 0.89 0.89 0.89 

All records belonging to the 'L' class have been identified as samples with a low hemispherical 
temperature of ash. None of the samples that have ‘M’or‘H’ label was classified in ‘L’ category. 
The values of precision and recall statistics (and consequently F1-score) for the ‘L’ class are therefore 



1319 Physicochem. Probl. Miner. Process., 5(55), 2019, 1311-1322 
 

equal to 1. It means that the presented algorithm very effectively identifies coal samples with the lowest 
HT.  

Nevertheless, few samples with a medium hemispherical temperature of ash were incorrectly 
classified in category ‘H’. Also, several records characterized by high HT were identified by algorithm 
as samples belonging to category ‘M’. The values of precision and recall statistics for ‘M’ and ‘H’ classes 
were therefore less than 1. 

4. IT tool for classifying coal blends for specific industrial applications 

4.1. Description of IT tool 

The presented system allows to analyze the behavior of AFTs in terms of creating blends in various 
proportions with different coals. In addition, the system indicates the most optimal blend combinations 
for a given industrial application. The diagram in Fig. 7 shows the idea of a proposed solution. 

 
Fig. 7. The idea of a system for automatic coal blends analysis in terms of AFTs 

The system uses a coal samples database and a knowledge base related to industrial applications 
and their requirements for AFTs. Before starting the program, the user can select a coal sample for which 
the algorithm will look for the components of the blends, as well as the proportions of blends and the 
specific industrial application for which the recommendation is issued by the system. The algorithm in 
the first step generates all combinations of blends of selected coal with other coals from the database in 
selected proportions. The oxide composition of the ash of the blend is calculated from the weighted 
average of the components of the blend. The algorithm then uses the previously trained SVM model to 
give blends appropriate labels. The final step of the algorithm is to select coal samples with labels 
compatible with the industrial application selected prior to running the algorithm and issue a 
recommendation on this basis. The system at the output indicates the recommended blend 
compositions. In practice, when selecting coal for blends, other factors, such as price or other key 
parameters of coal, are often taken into account. The system allows the analysis of how AFTs change in 
combinations of blends with individual coals. In this case, it is possible to ignore the automatic 
recommendation and focus on the analysis of the formation of AFTs in various proportions in blends 
with the coal that we are interested in (e.g. having the desired price). In the next chapter the practical 
use of the tool developed by the authors is described. 

4.2. Use case - selection of blends to the pulverized boiler 

The following practical problem has been defined: The particular coal was selected for combustion in a 
pulverized boiler. This coal is characterized by the medium fusion temperature of ash (determined in 
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laboratory test), whereas the AFTs of the coal used for combustion in pulverized boilers should be the 
highest possible (these samples should belong to the ‘H’ class). Therefore, it is necessary to compose 
blends with selected coal which properties meet the assumed requirements – high ash fusion 
temperature. The content of the sample database is presented in Table 3. Coals from 19 active mines in 
the Upper Silesian Coal Basin and two samples of low-quality coals were selected as an example. The 
selected samples were the most representative for the mines concerned. Low quality coals have been 
selected due to the often-used practice of blending coals of poor quality, but low price to reduce fuel 
costs. 

Table 3. Coals forming the basis for creating blends (L.Q.C – low quality coal) 

sample SiO2, % Al2O3, % Fe2O3,% CaO, % MgO, % Na2O, % K2O, % SO3, % TiO2, % 
Mine 1 36.56 28.3 8.72 7.56 4.08 1.38 2.04 6.44 1.2 
Mine 2 40.94 24.18 9.62 7.62 4.45 1.16 1.72 7.55 1.2 
Mine 3 38.15 25.99 8.67 7.85 4.34 1.28 1.91 7.99 0.94 
Mine 4 43.88 24.49 9.83 5.97 3.48 1.85 2.19 4.56 0.8 
Mine 5 48.95 24.74 13.14 2.31 2.02 0.93 3.03 2.28 0.97 
Mine 6 46.34 32.96 4.34 3.48 2.08 1.52 2.76 2.23 1.38 
Mine 7 34.07 25.1 7.42 11.05 6.08 2.08 1.31 9.11 0.97 
Mine 8 32.88 24.93 10.29 9.49 5.26 1.37 1.44 11.31 0.8 
Mine 9 46.25 28.21 6.43 4.42 2.96 0.64 2.8 4.55 1.11 
Mine 10 48.46 27.74 6.98 3.49 2.85 0.65 2.82 4.15 1.04 
Mine 11 39.23 28.57 8.27 5.92 3.58 4.64 1.23 6.06 1.3 
Mine 12 41.77 29.07 7.02 5.81 3.24 2.77 1.42 6.31 1.22 
Mine 13 49.66 26.21 11.17 3.29 2.27 0.53 2.12 2.51 1.22 
Mine 14 47.9 27.7 10.76 2.83 1.81 2.78 2.63 1.45 1.03 
Mine 15 18.94 14.27 13.54 19.71 11.17 2.68 0.83 16.72 0.56 
Mine 16 15.11 12.8 17.78 17.99 10.98 3.25 0.88 18.74 0.36 
Mine 17 29.34 16.37 13.84 16.85 8.91 2.56 1.43 8.63 0.59 
Mine 18 39.2 29.69 9.78 5.45 3.25 2.49 1.55 5.5 1.27 
Mine 19 28.37 19.18 23.59 7.69 5.28 2.74 1.38 9.59 0.88 
L.Q.C 1 53.86 23.97 6.46 3.16 3.03 1.55 3.03 2.89 1 
L.Q.C 2 56.93 26.6 5.01 1.49 1.99 0.79 3.48 1.43 1.09 

The selected coal comes from mine 16. Blends consist of two components. The proportions of blends 
have been set as 90/10, 10/90, 70/30, 30/70, 50/50. 

The application of the described IT tool allowed to select the following blends with a high AFTs and 
containing coal from mine 16. Table 4 shows coal blends selected by proposed algorithm. 

Table 4. Selected coal blends for pulverized boilers 

No Component 1 Component 2 
Mine  Proportion, % Mine Proportion, % 

1 16 10 6 90 
2 16 30 6 70 
3 16 10 10 90 
4 16 30 10 70 
5 16 10 L.Q.C 2 90 
6 16 30 L.Q.C 2 70 
7 16 50 L.Q.C 2 50 

The algorithm combined coal from mine 16 with coal from mines 6 and 10 and low quality coal 2. In 
the selected blends, coal from mine 16 was rather an additive than a basic ingredient. 

Coal from mine 16 is characterized by high content of SO3 and CaO in ash. These components affect 
the lowering of the ash fusion temperature, which is an unfavorable phenomenon in the case of 
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pulverized boilers. To enable the combustion of coal from mine 16 in this type of boilers, this coal should 
be blended with samples containing small amounts of CaO and SO3 in the ash. Moreover, since the 
content of CaO and SO3 in the ash of the sample from the mine 16 is very high, this coal should not be 
the primary component of the blend. 

The results of the optimization algorithm are consistent with the knowledge contained in the 
literature. It is generally known that Fe2O3, CaO, MgO, SO3, Mn3O4 reduce the ash fusion temperature 
(Róg, 2003; Song et al., 2010).  

5. Conclusions 

• Chosen machine learning technique Support Vector Machine (SVM) was used to develop a tool 
which task was to classify coal samples due to the hemispherical temperature (HT). Three categories 
of coal have been distinguished - samples with low, medium and high HT. Each of these classes has 
a specific suitability for various industrial applications (gasification and combustion processes).  

• Contents of nine different oxides (SiO2, Al2O3, Fe2O3, CaO, MgO, TiO2, Na2O, K2O, SO3) in ash were 
the input variables of analyzed problem. In order to reduce dimensionality of data set PCA analysis 
was applied. It was observed, that the first four principal components explained 92.6% of total 
variance. Therefore, it was decided to keep these components and apply them in next analysis steps. 

• Projections of the analyzed coal samples onto the planes determined by particular pairs of principal 
components indicated that the classes are quite well separated from each other.  

• Data after PCA transformation was used to develop the SVM classification model. The accuracy of 
this model was 92.3%. 

• IT tool that enable selection of coal blends for a specific type of boiler/reactor in terms of ash 
hemispherical temperature was developed. The SVM classifier was the core of the tool. It allowed to 
determine which coals and in what proportions should be blended with a given sample in order to 
obtain an oxide composition ensuring the desired HT.  

• The presented tool was used to analyze the behavior of HT in blends consisting of coals from the 
Upper Silesian Coal Basin. However, it can also be adapted to other coal basins. 
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